No Image

Чему равно осмотическое давление раствора

СОДЕРЖАНИЕ
0 просмотров
26 июля 2019
Форум » Химическое образование » Типовые задачи и решения по общей и неорганической химии » 3. Растворы. Осмотическое давление. (Изотонические растворы, молярная масса по осм. давлению.)

3. Растворы. Осмотическое давление.

FilIgor Дата: Среда, 07.11.2012, 11:33 | Сообщение # 1

3.1. Осмотическое давление неэлектролита и электролита.
Задание.

Определить осмотическое давление в 0,01 М растворе неэлектролита при 25 о С.

Решение.
Росм = CRT = 0,01*8,31*(273+25) = 24,764 кПа.

Задание 3.1.1.
Определить осмотическое давление в 0,1% растворе хлорида натрия при температуре 25 о С, считая его диссоциацию полной.
Плотность принять равной 1.

Решение.
Для электролитов необходимо учитывать изотонический коэффициент.
При полной диссоциации степень диссоциации α = 1.
Уравнение диссоциации: NaCl = Na + + Cl — . Cоль распадается на 2 иона, k = 2.
i = 1 + α(k — 1) = 1 + 1(2 — 1) = 2.
Определим молярную концентрацию раствора.
См = 10wp/Mr = 10*0,1*1/58,5 = 0,017 моль/л.

Росм = iCRT = 2*0,017*8,31*298 = 84,2 кПа.

It’s futile to speculate about what might have been
FilIgor Дата: Среда, 07.11.2012, 11:34 | Сообщение # 2

3.2. Определение молярной массы по осмотическому давлению.

Задание.
Определить молярную массу неэлектролита, если литр раствора, содержащий 1,8 г. растворенного вещества, создает при 25 о С осмотическое давление, равное 24,764 кПа.

Решение.
Определим молярную концентрацию.
См = Росм/RT = 24,764/8,31*298 = 0,01 моль/л.
Это количество вещества соответствует массе 1,8 г. Отсюда,
Mr = m/n = 1,8/0,01 = 180 г/моль.

It’s futile to speculate about what might have been
FilIgor Дата: Среда, 07.11.2012, 11:35 | Сообщение # 3

3.3. Определение степени диссоциации по осмотическому давлению.

Задание.
Определить степень диссоциации бромида алюминия, если литр раствора, содержащий 26,7 г. растворенного вещества, создает при 0 о С осмотическое давление, равное 635,22 кПа.

Решение.
Определим молярность раствора.
См = m/Mr*V = 26,7/267*1 = 0,1 моль/л.
Определим изотонический коэффициент.
i = Росм/CRT = 635,22/0,1*8,31*273 = 2,8.
Определим степень диссоциации.
i = 1 + α(k — 1), для бромида алюминия k = 4. Отсюда,

α = (i — 1)/(k — 1) = (2,8 — 1)/(4 — 1) = 0,6. (60%).

It’s futile to speculate about what might have been
FilIgor Дата: Суббота, 17.11.2012, 14:41 | Сообщение # 4

3.4. Изотонические растворы.

Задание.
При определенной температуре 0,2 М раствор хлорида кальция изотоничен 0,5 М раствору глюкозы.
Определить степень диссоциации соли.

Решение.
Изотоническими называют растворы с равным осмотическим давлением.
Pосм(CaCl2) = iC1RT,
Pосм(C6H12O6) = C2RT.
По условию, Pосм(CaCl2) = Pосм(C6H12O6)
Отсюда, iC1RT = C2RT.
i = C2RT/C1RT = C2/C1 = 0,5/0,2 = 2,5. Для CaCl2, k = 3.

α = (i — 1)/(k — 1) = (2,5 — 1)/(3 — 1) = 0,75. (75%).

Если привести в соприкосновение два раствора с разными концентрациями, то молекулы растворителя и растворенного вещества будут диффундировать в противоположных направлениях, преимущественно в том направлении, где их концентрация ниже. Такая двусторонняя диффузия приведет к выравниванию концентраций (С12).

Рассмотрим особый случай односторонней диффузии, когда на границе между раствором и растворителем или между двумя растворами различной концентрации находится перегородка, проницаемая для молекул растворителя и задерживающая частицы растворенного вещества.

Представим себе, что в сосуд с водой опущен цилиндр с раствором, нижняя часть которого изготовлена из материала, пропускающего растворитель, но не пропускающего частицы растворенного вещества (полупроницаемая перегородка). Получается неравновесная система, т.к. если в воде N1=1, то в растворе мольная доля растворителя – воды N1

Осмотическое давление Росм зависит от температуры раствора и его концентрации и не зависит от природы растворителя и растворенного вещества. В 1886 г. голландский химик Вант-Гофф показал, что для разбавленных растворовнеэлектролитов зависимость осмотического давления от температуры и концентрации выражается уравнением (закон Вант-Гоффа):

,

где Росм – осмотическое давление раствора, кПа; С – молярная концентрация растворенного неэлектролита, моль/л; Т – абсолютная температура, К.

Заменим величину С отношением ; , где m – масса растворенного вещества, г; M – молярная масса растворенного вещества, г/моль; V – объем раствора, л. Подставим это отношение в выражение закона Вант-Гоффа:

.

Формально уравнение Вант-Гоффа аналогично уравнению состояния идеального газа и выражает сходство в поведении разбавленных растворов неэлектролитов с идеальными газами. Из вышеприведенного уравнения выразим величину М:

.

Данное выражение позволяет определить молекулярную массу растворенного вещества, измерив осмотическое давление в осмометре.

Явление осмоса играет важную роль в жизни растений, животных и человека. Стенки растительных клеток живых организмов представляют собой полупроницаемые мембраны, через которые свободно проходят молекулы воды, но почти полностью задерживаются вещества, растворенные в клеточном соке. Поэтому осмос служит причиной тургора (состояние напряжения) и плазмолиза (сморщивание) клеток. С ним связаны процессы усвоения пищи и обмена веществ. У высших животных и человека осмотическое давление в разных органах и тканях несколько меньше 8 атм и постоянно. Осмотическое давление широко встречается в природе, например, в скважинах осмотическое давление рвет породы и т.д.

Растворы электролитов

Свойства растворов электролитов. При изучении свойств водных растворов кислот, щелочей и солей, относящихся к электролитам, было установлено, что они не подчиняются законам Рауля и Вант-Гоффа. Они имеют бо́льшие, чем вычисленные по соответствующим формулам, понижениедавления насыщенного пара растворителя над раствором ( Р), повышение температуры кипения ( tкип) и понижение температуры замерзания ( tзам), осмотическое давление (Росм). Чтобы распространить на растворы электролитов расчетные формулы законов Рауля и Вант-Гоффа, в них был введен поправочный коэффициент i, называемый также изотоническим коэффициентом (ввел Вант-Гофф – 1887г.). Тогда

Читайте также:  Как поднять давление домашними средствами

;

.

Изотонический коэффициент показывает, во сколько раз экспериментальные величины , , , больше теоретических, т.е. вычисленных по формулам для растворов неэлектролитов:

.

Коэффициент i показывает меру отклонения растворов электролитов от закономерностей для неэлектролитов;он всегда больше единицы (i>1), стремится к целому числу.

Электролитическая диссоциация.Наблюдаемые отклонения для растворов электролитов, а также их способность проводить электрический ток были объяснены на основе теории электролитической диссоциации, созданной шведским ученым Аррениусом (1883 г.).

Основные положения теории электролитической диссоциации:

1.Электролитическая диссоциация – распад молекул электролитов на ионы в среде растворителя.

2. Электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы.

3. Под действием электрического тока положительно заряженные ионы движутся к катоду, отрицательно заряженные – к аноду. Поэтому первые называют катионами, вторые – анионами.

4. Сумма положительных зарядов в растворе равна сумме отрицательных зарядов, поэтому раствор в целом электронейтрален.

5. Ионы представляются как точечные заряды, взаимодействия между которыми отсутствуют (подобны идеальным газовым смесям).

6. Диссоциация – процесс обратимый, поскольку одновременно протекают процесс распада молекул на ионы (диссоциация) и процесс соединения ионов в молекулы (ассоциация). Например, уравнение диссоциации молекулы электролита КА на катион К + и анион Аˉ записывается так:

КА D К + + Аˉ.

Согласно теории Аррениуса, вследствие диссоциации электролитов на ионы, с одной стороны, увеличивается общее число частиц в растворе, а следовательно, возрастают понижение давления пара и изменение температуры кипения и замерзания, с другой стороны – ионы обусловливают способность раствора проводить электрический ток.

Физический смысл изотонического коэффициента i состоит в увеличении общего числа частиц в растворе за счет диссоциации растворенного вещества на ионы.

Однако теория Аррениуса рассматривала ионы как свободные не зависимые от молекул растворителя частицы, не учитывала всей сложности явлений в растворах. Теории Аррениуса противостояла химическая, или гидратная, теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворенного вещества с растворителем. В преодолении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому ученому И. А. Каблукову, впервые высказавшему предположение о гидратации ионов. Развитие этой идеи привело в дальнейшем к объединению теории Аррениуса и Менделеева.

В создании современной физико-химической теории растворов большую роль сыграли работы русских ученых Д. И. Менделеева, И. А. Каблукова, Д.П. Коновалова, В. А. Кистяковского и др.

Сольватация (гидратация). По современным представлениям причиной электролитической диссоциации является физико-химическое взаимодействие между полярными молекулами и ионами растворяемого вещества и полярными молекулами растворителя (сольватация), приводящее к образованию соединений сольватов (комплексов). В случае, если вода – растворитель, говорят о гидратации и образовании гидратов.

Взаимодействие между молекулами и ионами растворяемого вещества и молекулами воды может состоять из нескольких процессов, протекающих последовательно или одновременно: молекулярной диссоциации, образования сольватов, ионизации и электролитической диссоциации. В зависимости от типа растворяющихся веществ число стадий может изменяться. Так, в случае ионных кристаллов стадии образования гидратов и электролитическая диссоциация совмещены.

В случае ассоциированных веществ первой стадией является молекулярная диссоциация растворенного вещества. Процесс молекулярной диссоциации происходит вследствие химического взаимодействия между молекулами растворяемого вещества КА, (m+n) молекулами воды с образованием гидратированной молекулы КА(m+n)Н2О:

Образующийся гидрат диссоциирует на гидратированные ионы (стадия электролитической диссоциации):

КА(m+n)Н2О D К + ·mН2О + А – ·nН2О. (б) Схематично процесс гидратации, на примере реакций (а) и (б), представлен

на рис. 8.5.

Процесс гидратации может остановиться на любой стадии. Если процесс гидратации останавливается на стадии (а), то система представляет собой раствор неэлектролита. Она характеризуется отсутствием ионов в растворе и соответственно не обладает ионной электрической проводимостью. Если процесс гидратации протекает до стадии (б), то система является раствором электролита, т.е. имеет место электролитическая диссоциация с образованием ионов. Уравнение электролитической диссоциации можно записать, опустив промежуточные стадии, указав лишь начальные и конечные продукты реакции:

Особенностью гидратов (сольватов) как химических соединений является то, что коэффициенты n и m меняются с изменением концентрации, температуры и других параметров раствора. Поэтому приведенные формулы гидратов (сольватов) не отражают их истинного стехиометрического состава, и в уравнениях химических реакций гидратированные ионы обычно записывают, например, К + ·aq, А – · aq.

Однако часто в подобных уравнениях опускают молекулы растворителя, записывая их в таком виде:

Электролитическая диссоциация протекает самопроизвольно (∆G + + SО4 2- .

К сильным электролитам в водных растворах относятся почти все соли, основания щелочных и щелочноземельных металлов, кислоты: H2SO4, HNO3, HCl, HBr, HI, HСlO4, HClO3, HBrO4, HBrO3, HIO3, H2SeO4, HMnO4, H2MnO4 и т.д.

К слабым электролитам относятся электролиты, степень диссоциации которых в растворах меньше единицы (α + + ОН —

К слабым электролитам относят воду, почти все органические кислоты (муравьиную, уксусную, бензойную и т.д.), ряд неорганических кислот (H2SO3, HNO2, H2CO3, H3AsO4, H3AsO3, H3BO3, H3PO4, H2SiO3, H2S, H2Se, H2Te, HF, HCN, HCNS), основания p-, d-, f- элементов (Al(OH)3, Cu(OH)2, Fe(OH)2 и т.д.), гидроксид аммония, гидроксиды магния и бериллия, некоторые соли (CdI2, CdCl2, HgCl2, Hg(CN)2, Fe(CNS)3 и т.д.).

Численное значение степени электролитической диссоциации зависит от различных факторов:

1. Природа растворителя.

Это связано с величиной диэлектрической проницаемости растворителя ε. Как следует из закона Кулона, сила (f) электростатического притяжения двух разноименно заряженных частиц зависит не только от величины их зарядов (q1 и q2), расстояния между ними r, но и от природы среды, в которой взаимодействуют заряженные частицы, т.е. от ε:

Читайте также:  Какие препараты относятся к диуретикам

.

Например, при 298 К ε(Н2О) = 78,25, а ε(С6Н6) = 2,27. Такие соли, как KCl, LiCl, NaCl и др., в воде полностью диссоциированы на ионы, т.е. ведут себя как сильные электролиты; в бензоле эти соли диссоциируют лишь частично, т.е. являются слабыми электролитами. Таким образом, одни и те же вещества могут проявлять различную способность к диссоциации в зависимости от природы растворителя.

У сильных электролитов с повышением температуры степень диссоциации уменьшается, у слабых – при повышении температуры до 60°С α увеличивается, а затем начинает уменьшаться.

3. Концентрация раствора.

Если рассматривать диссоциацию как равновесный химический процесс, то в соответствии с принципом Ле Шателье добавление растворителя (разбавление водой), как правило, увеличивает количество продиссоциированных молекул, что приводит к увеличению α. Процесс образования молекул из ионов в результате разбавления затрудняется: для образования молекулы должно произойти столкновение ионов, вероятность которого с разбавлением уменьшается.

4. Наличие одноименных ионов.

Добавление одноименных ионов уменьшает степень диссоциации, что также согласуется с принципом Ле Шателье. Например, в растворе слабой азотистой кислоты при электролитической диссоциации устанавливается равновесие между недиссоциированными молекулами и ионами:

При введении в раствор азотистой кислоты нитрит-ионов NO2ˉ (прибавлением раствора нитрита калия КNО2) равновесие сместится влево, следовательно, степень диссоциации α уменьшится. Аналогичный эффект даст и введение в раствор ионов Н + .

Необходимо отметить, что не следует путать понятия «сильный электролит» и «хорошая растворимость». Например, растворимость СН3СООН в Н2О неограниченная, однако уксусная кислота относится к слабым электролитам ( = 0,014 в 0,1 М растворе). С другой стороны, ВаSО4 – малорастворимая соль (при 20°С растворимость меньше 1 мг в 100 г Н2О), но относится к сильным электролитам, так как все молекулы, перешедшие в раствор, распадаются на ионы Ва 2+ и SО4 2- .

Осмотическое давление (обозначается π) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничностью. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Если же подобный раствор находится в замкнутом пространстве, например, в клетке крови, то осмотическое давление может привести к разрыву клеточной мембраны. Именно по этой причине лекарства, предназначенные для введения в кровь, растворяют в изотоническом растворе, содержащем столько хлорида натрия (поваренной соли), сколько нужно, чтобы уравновесить создаваемое клеточной жидкостью осмотическое давление. Если бы вводимые лекарственные препараты были изготовлены на воде или очень сильно разбавленном (гипотоническом по отношению к цитоплазме) растворе, осмотическое давление, заставляя воду проникать в клетки крови, приводило бы к их разрыву. Если же ввести в кровь слишком концентрированный раствор хлорида натрия (3—10 %, гипертонические растворы), то вода из клеток будет выходить наружу, и они сожмутся. В случае растительных клеток происходит отрыв протопласта от клеточной оболочки, что называется плазмолизом. Обратный же процесс, происходящий при помещении сжавшихся клеток в более разбавленный раствор, — соответственно, деплазмолизом.

Величина осмотического давления, создаваемая раствором, зависит от количества, а не от химической природы растворенных в нём веществ (или ионов, если молекулы вещества диссоциируют), следовательно, осмотическое давление является коллигативным свойством раствора. Чем больше концентрация вещества в растворе, тем больше создаваемое им осмотическое давление. Это правило, носящее название закона осмотического давления, выражается простой формулой, очень похожей на уравнение состояния для идеального газа:

π = i ⋅ C ⋅ R ⋅ T <displaystyle pi =icdot Ccdot Rcdot T> ,

где i — изотонический коэффициент раствора; C — молярная концентрация раствора, выраженная через комбинацию основных единиц СИ, то есть, в моль/м³; R — универсальная газовая постоянная; T — термодинамическая температура раствора.

Это показывает также схожесть свойств частиц растворённого вещества в вязкой среде растворителя с частицами идеального газа в воздухе. Правомерность этой точки зрения подтверждают опыты Ж. Б. Перрена (1906): распределение частичек эмульсии смолы гуммигута в толще воды в общем подчинялось закону Больцмана.

Осмотическое давление, которое зависит от содержания в растворе белков, называется онкотическим (0,03—0,04 атм). При длительном голодании, болезни почек концентрация белков в крови уменьшается, онкотическое давление в крови снижается и возникают онкотические отёки: вода переходит из сосудов в ткани, где πОНК больше. При гнойных процессах πОНК в очаге воспаления возрастает в 2—3 раза, так как увеличивается число частиц из-за разрушения белков.

В организме осмотическое давление должно быть постоянным (около 7,7 атм). Поэтому пациентам вводят изотонические растворы (растворы, осмотическое давление которых равно πплазмы ≈ 7,7 атм. (0,9 % NaCl — физиологический раствор, 5 % раствор глюкозы). Гипертонические растворы, у которых π больше, чем πплазмы, применяются в медицине для очистки ран от гноя (10 % NaCl), для удаления аллергических отёков (10 % CaCl2, 20 % глюкоза), в качестве слабительных лекарств (Na2SO4∙10H2O, MgSO4∙7H2O).

Читайте также:  Как узнать размер компрессионных гольф

Закон осмотического давления можно использовать для расчёта молекулярной массы данного вещества (при известных дополнительных данных).

Содержание

Обоснование формулы Вант-Гоффа с термодинамических позиций [ править | править код ]

В растворе свободная энергия G = G 0 + R T l n x A + π V C <displaystyle G=G^<0>+RTlnx_+pi V_> , где x A <displaystyle x_> — молярная часть раствора, V C <displaystyle V_> — его мольный объем. Появление члена π V C <displaystyle pi V_> эквивалентно внесению в свободную энергию внешнего давления. Для чистого растворителя G = G 0 <displaystyle G=G^<0>> . При равновесии ∇ G <displaystyle
abla G> для растворителя равно нулю. Таким образом,

0 = ∇ G = G 0 + R T l n x A + π V C − G 0 = R T l n x A + π V C , <displaystyle 0=
abla G=G^<0>+RTlnx_+pi V_-G^<0>=RTlnx_+pi V_,>

π = − R T V C l n ( 1 − x B ) ≅ R T V C x B ≅ R T V C n B n A ≅ R T n B V = c R T , <displaystyle pi =-<frac >>ln(1-x_)cong <frac >>x_cong <frac >><frac >>cong RT<frac >>=cRT,>

то есть получена формула Я. Вант-Гоффа ( π = c R T <displaystyle pi =cRT> ).

При её выведении высчитано, что x B <displaystyle x_> — малая величина. Это позволяет разложить l n ( 1 − x B ) <displaystyle ln(1-x_)> в ряд и далее применить соотношение x B ≅ n B n A . <displaystyle x_cong <frac >>.> Произведение n A V C <displaystyle n_V_> в разбавленных растворах практически равно объему раствора.

Осмотическое давление коллоидных растворов [ править | править код ]

Для возникновения осмотического давления должны выполняться два условия:

  • наличие полупроницаемой перегородки (мембраны);
  • наличие по обе стороны мембраны растворов с разной концентрацией.

Мембрана проницаема для частичек (молекул) определенного размера, поэтому она может, например, выборочно пропускать сквозь свои поры молекулы воды, не пропуская молекулы этилового спирта. Для газовой смеси — водорода и азота — роль полупроницаемой мембраны может выполнять тонкая палладиевая фольга, сквозь которую свободно диффундирует водород, тогда как азот она практически не пропускает. с помощью такой мембраны можно разделять смесь водорода и азота на отдельные компоненты.

Простыми и давно известными примерами мембран, которые проницаемы для воды и непроницаемы для многих других растворенных в воде веществ, является кожа, пергамент, и другие ткани животного и растительного происхождения.

Пфеффер с помощью осмометра, в котором в качестве полупроницаемой мембраны использовался пористый фарфор, обработанный C u 2 F e ( C N ) 6 <displaystyle Cu_<2>Fe(CN)_<6>> , исследовал осмотическое давление водных растворов тростникового сахара. На основе этих измерений Вант-Гофф в 1885 году предложил эмпирическое уравнение, которому подчиняется осмотическое давление π <displaystyle pi > разведенных растворов:

π = c R T <displaystyle pi =cRT> ,

где c=n/V — концентрация растворенного вещества, моль/м³.

Это уравнение по форме совпадает с законом Бойля-Мариотта для идеальных газов. Поэтому осмотическое давление разведенных растворов можно определить как давление, которое бы создавала то же самое количество молекул растворенного вещества, если бы оно было в виде идеального газа и занимало при данной температуре объем, равный объему раствора.

Уравнение Вант-Гоффа можно несколько преобразовать, подставляя вместо концентрации c i = n i / V = m i / M i V <displaystyle c_=n_/V=m_/M_V> :

π = c i R T = m i M i V R T <displaystyle pi =c_RT=<frac >V>>RT> ,

где m i <displaystyle m_> — массовая концентрация растворенного вещества; M i <displaystyle M_> — его молекулярная масса.

В таком виде уравнение Вант-Гоффа широко применяется для определения молярной массы растворенного вещества. Осмотический метод применяют зачастую для определения молярных масс высокомолекулярных соединений (белков, полисахаридов и других). Для этого достаточно измерить осмотическое давление раствора с известной концентрацией.

Если вещество диссоциирует в данном растворе, то осмотическое давление будет большим, чем рассчитанное и нужно вводить изотонический коэффициент:

π = i c R T . <displaystyle pi =icRT.>

Уравнение Вант-Гоффа справедливо только для разведенных растворов, которые подчиняются закону Рауля. При повышенных концентрациях растворов c i <displaystyle c_> в последнем уравнении должно быть заменено на активность a 1 <displaystyle a_<1>> или фугитивность f 1 . <displaystyle f_<1>.>

Роль осмоса в биологических системах [ править | править код ]

Явление осмоса и осмотическое давление играют огромную роль в биологических системах, которые содержат полупроницаемые перегородки в виде разных тканей, в том числе оболочек клеток. Постоянный осмос воды внутрь клеток создает избыточное гидростатическое давление, которое обеспечивает прочность и упругость тканей, которое называют тургором.

Если клетку, например, эритроцит, поместить в дистиллированную воду (или очень разбавленный раствор соли), то вода будет проникать внутрь клетки и клетка будет набухать. Процесс набухания может привести к разрыву оболочки эритроцита, если произойдет так называемый гемолиз.

Обратное явление наблюдается, если вместить клетку в концентрированный раствор соли: сквозь мембрану вода из клеток диффундирует в раствор соли. При этом протоплазма сбрасывает оболочку, клетка сморщивается, теряет тургор и стойкость, свойственные ей в нормальном состоянии. Это явление называется плазмолизом. При помещении плазмолизованных клеток в воду протоплазма опять набухает и в клетке восстанавливается тургор. Происходит при этом так называемый деплазмолиз: это можно наблюдать, помещая цветы, которые начинают вянуть, в воду. И только в изотоническом растворе, который имеет одинаковую концентрацию (вернее, одинаковое осмотическое давление с содержанием клетки), объем клетки остается неизменным.

Процессы усвоения еды, обмена веществ тесно связаны с разной проницаемостью тканей для воды и других растворенных в ней веществ.

Осмотическое давление отыгрывает роль механизма, который подает нутриенты клеткам; у высоких деревьев последние поднимаются на высоту нескольких десятков метров, что соответствует осмотическому давлению в несколько десятков атмосфер. Типовые клетки, сформировавшиеся с протоплазматических мешков, наполненных водными растворами разных веществ (клеточный сок), имеют определенное значение для давления, величина которого измеряется в пределах 0,4—2 МПа.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector