No Image

Срок жизни эритроцитов в крови человека

СОДЕРЖАНИЕ
1 просмотров
26 июля 2019

Система крови человека

Форменные элементы крови

Эритроциты. Красные кровяные клетки, или эритроциты, представляют собой круглые диски.

В 1 мм3 крови содержится 5-6 млн. эритроцитов. Они составляют 44-48% общего объема крови. Эритроциты имеют форму двояковогнутого диска, т.е. плоские стороны диска как бы сжаты, что делает его похожим на пончик без дырки. В зрелых эритроцитах нет ядер. Они содержатглавным образом гемоглобин, концентрация которого во внутриклеточной водной среде около 34%. [В пересчете на сухой вес содержание гемоглобина в эритроцитах — 95%; в расчете на 100 мл крови содержание гемоглобина составляет в норме 12-16 г (12-16 г%), причем у мужчин оно несколько выше, чем у женщин.] Кроме гемоглобина эритроциты содержат растворенные неорганические ионы (преимущественно К+) и различные ферменты.

Две вогнутые стороны обеспечивают эритроциту оптимальную площадь поверхности, через которую может происходить обмен газами: углекислым газом и кислородом.

В организме плода примитивные красные кровяные клетки вначале образуются в печени, селезенке и тимусе. С пятого месяца внутриутробного развития в костном мозге постепенно начинается эритропоэзобразование полноценных эритроцитов. В исключительных обстоятельствах (например, при замещении нормального костного мозга раковой тканью) взрослый организм может вновь переключиться на образование эритроцитов в печени и селезенке. Однако в нормальных условиях эритропоэз у взрослого человека идет лишь в плоских костях (ребрах, грудине, костях таза, черепа и позвоночника).

Эритроциты развиваются из клеток-предшественников, источником которых служат т.н. стволовые клетки. На ранних стадиях формирования эритроцитов (в клетках, еще находящихся в костном мозге) четко выявляется клеточное ядро. По мере созревания в клетке накапливается гемоглобин, образующийся в ходе ферментативных реакций. Перед тем как попасть в кровоток, клетка утрачивает ядро — за счет экструзии (выдавливания) или разрушения клеточными ферментами. При значительных кровопотерях эритроциты образуются быстрее, чем в норме, и в этом случае в кровоток могут попадать незрелые формы, содержащие ядро; очевидно, это происходит из-за того, что клетки слишком быстро покидают костный мозг.

Срок созревания эритроцитов в костном мозге — от момента появления самой юной клетки, узнаваемой как предшественник эритроцита, и до ее полного созревания — составляет 4-5 дней.

Упрощенная схема гемопоэза

Срок жизни зрелого эритроцита в периферической крови — в среднем 120 дней.

Однако при некоторых аномалиях самих этих клеток, целом ряде болезней или под воздействием определенных лекарственных препаратов время жизни эритроцитов может сократиться.

Большая часть эритроцитов разрушается в печени и селезенке; при этом гемоглобин высвобождается и распадается на составляющие его гем и глобин. Дальнейшая судьба глобина не прослеживалась; что же касается гема, то из него высвобождаются (и возвращаются в костный мозг) ионы железа.

Утрачивая железо, гем превращается в билирубин — красно-коричневый желчный пигмент. После незначительных модификаций, происходящих в печени, билирубин в составе желчи выводится через желчный пузырь в пищеварительный тракт. По содержанию в кале конечного продукта его превращений можно рассчитать скорость разрушения эритроцитов. В среднем во взрослом организме ежедневно разрушается и вновь образуется 200 млрд. эритроцитов, что составляет примерно 0,8% общего их числа (25 трлн.).

Гемоглобин. Основная функция эритроцита — транспорт кислорода из легких к тканям организма. Ключевую роль в этом процессе играет гемоглобин — органический пигмент красного цвета, состоящий из гема (соединения порфирина с железом) и белка глобина. Гемоглобин отличается высоким сродством к кислороду, за счет чего кровь способна переносить гораздо больше кислорода, чем обычный водный раствор.

Степень связывания кислорода с гемоглобином зависит прежде всего от концентрации кислорода, растворенного в плазме. В легких, где кислорода много, он диффундирует из легочных альвеол через стенки кровеносных сосудов и водную среду плазмы и попадает в эритроциты; там он связывается с гемоглобином — образуется оксигемоглобин.

В тканях, где концентрация кислорода невелика, молекулы кислорода отделяются от гемоглобина и проникают в ткани за счет диффузии. Недостаточность эритроцитов или гемоглобина приводит к снижению транспорта кислорода и тем самым к нарушению биологических процессов в тканях.

У человека различают гемоглобин плода (тип F, от fetus — плод) и гемоглобин взрослых (тип A, от adult — взрослый). Известно много генетических вариантов гемоглобина, образование которых приводит к аномалиям эритроцитов или их функции. Среди них наиболее известен гемоглобин S, обусловливающий серповидноклеточную анемию.

Читайте также:  Повышен уровень сахара в крови что делать

Лейкоциты. У здорового человека в 1 мм3 крови содержится от 4000 до 10 000 лейкоцитов (в среднем около 6000), что составляет 0,5-1% объема крови. Соотношение отдельных видов клеток в составе лейкоцитов может значительно варьировать у разных людей и даже у одного и того же человека в разное время.

Белые клетки периферической крови, или лейкоциты, делят на два класса в зависимости от наличия или отсутствия в их цитоплазме особых гранул:

Клетки, не содержащие гранул (агранулоциты), это лимфоциты и моноциты; их ядра имеют преимущественно правильную круглую форму.

Моноциты. Диаметр этих незернистых лейкоцитов составляет 15-20 мкм. Ядро овальное или бобовидное, может быть поделено на крупные доли, которые перекрывают друг друга. Цитоплазма при окраске голубовато-серая, содержит незначительное число включений, окрашивающихся красителем азуром в сине-фиолетовый цвет.

Эритроцитами называются клетки, ролью которых является транспорт кислорода и углекислоты. У человека и млекопитающих это безъядерные форменные элементы, которые образуются красным костным мозгом. Выполняя свою функцию, они приобретают новые и новые повреждения. Со временем они, неспособные восстанавливаться, видоизмененные и деформированные, должны быть уничтожены.

Процесс разрушения эритроцита

Из-за наличия естественного механизма старения клеток продолжительность жизни эритроцитов составляет 120 суток. Это средний срок, на протяжении которого клетки способны выполнять свою функцию. Хотя теоретически эритроцит может погибнуть и сразу после выхода из костного мозга. Причина — механическое повреждение, возникающее, например, во время длительной ходьбы маршем или при травмах. Тогда разрушение происходит либо в гематоме, либо внутри сосудов.

Естественный процесс разрушения, который регулирует продолжительность жизни эритроцитов, протекает в селезенке. Макрофагами распознаются клетки с малым количеством рецепторов, что означает, что они уже долго циркулируют в крови или имеют значительные повреждения. Затем форменный элемент переваривается макрофагом, который отделяет гем (ион железа) от белковой части гемоглобина. Металл отправляется обратно в костный мозг, где клеткой-кормилкой передается делящимся проэритробластам.

Особенности жизнедеятельности эритроцита человека

Теоретически продолжительность жизни эритроцитов человека могла бы быть бесконечно большой при некоторых условиях. Во-первых, должно отсутствовать механическое сопротивление при циркуляции крови. Во-вторых, сами эритроциты не должны деформироваться. Однако в сосудистом русле человека данные условия не могут быть соблюдены.

При движении красных кровяных клеток по сосудам они выдерживают множественные механические воздействия. Как результат, нарушается целостность их мембран, повреждаются некоторые поверхностные рецепторные белки. Более того, у эритроцита нет ядра и органелл, предназначенных для биосинтеза белка. Значит, полученные дефекты клетка не может восстанавливать. Как результат, макрофаги селезенки "вылавливают" клетки с малым количеством рецепторов (это значит, что клетка уже долго циркулирует в крови и, возможно, серьезно повреждена) и уничтожают их.

Необходимость уничтожения "возрастных" эритроцитов

Фактическая продолжительность жизни эритроцитов человека составляет порядка 120 суток. За этот период они получают множество повреждений, из-за которых нарушается диффузия газов через мембрану. Потому клетки в плане газообмена становятся менее эффективными. Также "пожилые" эритроциты — это неустойчивые клетки. Их мембрана может разрушиться прямо в кровяном русле. Результатом этого станет развитие двух патологических механизмов.

Во-первых, высвобожденный гемоглобин, который попадет в кровяное русло, является высокомолекулярным металлопротеином. Без естественного ферментативного процесса инволюции вещества, которая в норме может протекать только в макрофагах селезенки, этот белок становится опасным для человека. Он будет попадать в почки, где сможет повреждать гломерулярный аппарат. Результатом станет постепенное развитие почечной недостаточности.

Пример патологического разрушения эритроцитов

При условии, что постепенно в сосудистом русле будет разрушаться некоторое количество эритроцитов, концентрация гемоглобина в крови будет примерно постоянной. Значит, почки будут повреждаться тоже постоянно и по прогрессирующей. Потому еще одним значением, почему эритроциты разрушаются заранее, является не только изъятие "пожилых" форм, а недопущение их разрушения в крови.

К слову, пример токсического поражения металлопротеином можно четко рассмотреть на примере краш-синдрома. Здесь большое количество миоглобина (вещества, предельно близкого к гемоглобину по структуре и составу) попадает в кровь из-за некроза мышцы. Это повреждает почки и приводит к полиорганной недостаточности. В случае с гемоглобином следует ожидать аналогичного эффекта. Потому для организма важно вовремя устранить "пожилые" клетки, а потому продолжительность жизни эритроцитов максимально составляет около 120 суток. А что же можно сказать о животных?

Читайте также:  Из чего состоит атеросклеротическая бляшка

Продолжительности жизни эритроцитов у животных

У животных разных классов форменные элементы крови различны. Потому срок их жизни тоже отличается от человеческого. Но если взять в качестве примера млекопитающих, то здесь множество сходств. Красные форменные элементы крови млекопитающих почти такие же, как и человеческие. Значит, продолжительность жизни эритроцитов у них примерно такая же.

Ситуация обстоит по-другому у земноводных, рептилий, рыб и птиц. У всех их в красных кровяных клетка есть ядра. Значит, они не лишены способности синтезировать белки, пусть это свойство и не самое главное для них. Куда важнее возможность восстанавливать свои рецепторы и повреждения. Потому продолжительность жизни эритроцитов у животных несколько больше, чем у человека. Насколько она выше, сложно ответить, потому как исследований с мечеными клетками у них не проводилось за ненадобностью.

Значение исследований у человека

До некоторого времени знание того, что продолжительность жизни эритроцитов в крови человека составляет 120 суток, никак не помогало практической медицине. Однако после открытия способности гемоглобина связываться с некоторыми веществами, открылись новые возможности. В частности, сегодня широко практикуется способ определения гликированного гемоглобина. Это дает информацию о том, насколько высоко повышался уровень гликемии в последние три месяца. Это существенно помогает в диагностике сахарного диабета, так как позволяет узнать, как повышается глюкоза крови.

Эритроциты
Ткань соединительная История дифференцировки клетки

Миелобласт → Проэритробласт → Базофильный нормобласт → Полихроматофильный нормобласт → Ортохроматофильный нормобласт → Ретикулоцит → Эритроцит

Медиафайлы на Викискладе

Эритроци́ты (от греч. ἐρυθρός — красный и κύτος — вместилище, клетка), также известные под названием кра́сные кровяны́е тельца́ — клетки крови позвоночных животных (включая человека) и гемолимфы некоторых беспозвоночных (сипункулид, у которых эритроциты плавают в полости целома [1] , и некоторых двустворчатых моллюсков [2] ). Они насыщаются кислородом в лёгких или в жабрах и затем разносят его (кислород) по телу животного.

Цитоплазма эритроцитов богата гемоглобином — пигментом красного цвета, содержащим двухвалентный атом железа, который способен связывать кислород и придаёт эритроцитам красный цвет.

Человеческие эритроциты — очень маленькие эластичные клетки дисковидной двояковогнутой формы диаметром от 7 до 10 мкм . Размер и эластичность помогают им при движении по капиллярам, их форма обеспечивает большую площадь поверхности, что облегчает газообмен. В них отсутствует клеточное ядро и большинство органелл, что повышает содержание гемоглобина. Около 2,4 миллиона новых эритроцитов образуется в костном мозге каждую секунду [3] . Они циркулируют в крови около 100 — 120 дней и затем поглощаются макрофагами. Приблизительно четверть всех клеток в теле человека — эритроциты [4] .

Содержание

Функции [ править | править код ]

Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2 – 3 мкм ).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем — комплекс протопорфирина IX с ионом 2-валентного железа, кислород обратимо координируется с ионом Fe 2+ гемоглобина, образуя оксигемоглобин HbO2:

Hb + O2 ⇌ <displaystyle
ightleftharpoons > HbO2

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование — стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты — промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся.

Читайте также:  Лечение тромбофлебита глубоких вен голени

Транспорт углекислого газа эритроцитами происходит с участием карбоангидразы 1 [en] , содержащейся в их цитоплазме. Этот фермент катализирует обратимое образование бикарбоната из воды и углекислого газа, диффундирующего в эритроциты:

H2O + CO2 ⇌ <displaystyle
ightleftharpoons > H + + HCO3

В результате в цитоплазме накапливаются ионы водорода, однако снижение pH при этом незначительно из-за высокой буферной ёмкости гемоглобина. Вследствие накопления в цитоплазме ионов бикарбоната возникает градиент концентрации, однако ионы бикарбоната могут покидать клетку только при условии сохранения равновесного распределения зарядов между внутренней и внешней средой, разделённых цитоплазматической мембраной, то есть выход из эритроцита иона бикарбоната должен сопровождаться либо выходом катиона, либо входом аниона. Мембрана эритроцита практически непроницаема для катионов, но содержит хлоридные ионные каналы, в результате выход бикарбоната из эритроцита сопровождается входом в него хлорид-аниона (хлоридный сдвиг).

Формирование эритроцитов [ править | править код ]

Формирование эритроцитов (эритропоэз) происходит в костном мозге черепа, рёбер и позвоночника, а у детей — ещё и в костном мозге в окончаниях длинных костей рук и ног. Продолжительность жизни эритроцита — 3 – 4 месяца, разрушение (гемолиз) происходит в печени и селезёнке. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения.

Полипотентная стволовая клетка крови (СКК) даёт клетку-предшественницу миелопоэза (КОЕ-ГЭММ), которая в случае эритропоэза даёт клетку-родоначальницу миелопоэза (БОЕ-Э), которая уже даёт унипотентную клетку, чувствительную к эритропоэтину (КОЕ-Э).

Колониеобразующая единица эритроцитов (КОЕ-Э) даёт начало эритробласту, который через образование пронормобластов уже дают морфологически различимые клетки-потомки нормобласты (последовательно переходящие стадии):

  • Эритробласт. Отличительные признаки его таковы: диаметр 20 – 25 мкм, крупное (более 2/3 всей клетки) ядро с 1 – 4 чётко оформленными ядрышками, ярко-базофильнаяцитоплазма с фиолетовым оттенком. Вокруг ядра имеется просветление цитоплазмы (т. н. «перинуклеарное просветление»), а на периферии могут формироваться выпячивания цитоплазмы (т. н. «ушки»). Последние 2 признака хотя и являются характерными для эритробластов, но не наблюдаются у них всех.
  • Пронормоцит. Отличительные признаки: диаметр 10 – 20 мкм, ядро лишается ядрышек, хроматин грубеет. Цитоплазма начинает светлеть, перинуклеарное просветление увеличивается в размере.
  • Базофильныйнормоцит. Отличительные признаки: диаметр 10 – 18 мкм, лишённое нуклеол ядро. Хроматин начинает сегментироваться, что приводит к неравномерному восприятию красителей, формированию зон окси- и базохроматина (т. н. «колесовидное ядро»).
  • Полихроматофильный нормоцит. Отличительные признаки: диаметр 9 – 12 мкм, в ядре начинаются пикнотические (деструктивные) изменения, однако колесовидность сохраняется. Цитоплазма приобретает оксифильность вследствие высокой концентрации гемоглобина.
  • Оксифильный нормоцит. Отличительные признаки: диаметр 7 – 10 мкм, ядро подвержено пикнозу и смещено на периферию клетки. Цитоплазма явно розовая, вблизи ядра в ней обнаруживаются осколки хроматина (тельца Жоли).
  • Ретикулоцит. Отличительные признаки: диаметр 9 – 11 мкм, при суправитальной окраске имеет жёлто-зелёную цитоплазму и сине-фиолетовый ретикулум. При покраске по Романовскому-Гимзе никаких отличительных признаков по сравнению со зрелым эритроцитом не выявляется. При исследовании полноценности, скорости и адекватности эритропоэза проводится специальный анализ количества ретикулоцитов.
  • Нормоцит. Зрелый эритроцит, с диаметром 7 – 8 мкм, не имеющий ядра и ДНК (в центре — просветление), цитоплазма — розово-красная.

Гемоглобин начинает накапливаться уже на этапе КОЕ-Э, однако его концентрация становится достаточно высокой для изменения цвета клетки лишь на уровне полихроматофильного нормоцита. Так же происходит и угасание (а впоследствии и разрушение) ядра — с КОЕ, но вытесняется оно лишь на поздних стадиях. Не последнюю роль в этом процессе у человека играет гемоглобин (основной его тип — Hb-A), который в высокой концентрации токсичен для самой клетки.

У птиц, пресмыкающихся, земноводных и рыб ядро просто теряет активность, но сохраняет способность к реактивации. Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка. Ретикулоциты попадают в кровеносную систему и через несколько часов становятся полноценными эритроцитами.

Комментировать
1 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector